________________
Testing Mistakes
It's easy to make mistakes when testing software or planning a testing effort. Some
mistakes are made so often, so repeatedly, by so many different people, that they deserve
the label Classic Mistake.
Classic mistakes cluster usefully into five groups, which I’ve called “themes”:
· The Role of Testing: who does the testing team serve, and how does it do that?
· Planning the Testing Effort: how should the whole team’s work be organized?
· Personnel Issues: who should test?
· The Tester at Work: designing, writing, and maintaining individual tests.
· Technology Rampant: quick technological fixes for hard problems.
I have two goals for this paper. First, it should identify the mistakes, put them in context,
describe why they’re mistakes, and suggest alternatives. Because the context of one
mistake is usually prior mistakes, the paper is written in a narrative style rather than as a
list that can be read in any order. Second, the paper should be a handy checklist of
mistakes. For that reason, the classic mistakes are printed in a larger bold font when they
appear in the text, and they’re also summarized at the end.
Although many of these mistakes apply to all types of software projects, my specific focus
is the testing of commercial software products, not custom software or software that is
safety critical or mission critical.
This paper is essentially a series of bug reports for the testing process. You may think
some of them are features, not bugs. You may disagree with the severities I assign. You
may want more information to help in debugging, or want to volunteer information of
your own. Any decent bug reporting system will treat the original bug report as the first
part of a conversation. So should it be with this paper. Therefore, see
http://www.stlabs.com/marick/classic.htm for an ongoing discussion of this topic.
Theme One: The Role of Testing
A first major mistake people make is thinking that the testing team is responsible
for assuring quality. This role, often assigned to the first testing team in an
organization, makes it the last defense, the barrier between the development team
(accused of producing bad quality) and the customer (who must be protected from them).
It’s characterized by a testing team (often called the “Quality Assurance Group”) that has
Classic Testing Mistakes
2
formal authority to prevent shipment of the product. That in itself is a disheartening task:
the testing team can’t improve quality, only enforce a minimal level. Worse, that authority
is usually more apparent than real. Discovering that, together with the perverse incentives
of telling developers that quality is someone else’s job, leads to testing teams and testers
who are disillusioned, cynical, and view themselves as victims. We’ve learned from
Deming and others that products are better and cheaper to produce when everyone, at
every stage in development, is responsible for the quality of their work ([Deming86],
[Ishikawa85]).
In practice, whatever the formal role, most organizations believe that the purpose of
testing is to find bugs. This is a less pernicious definition than the previous one, but
it’s missing a key word. When I talk to programmers and development managers about
testers, one key sentence keeps coming up: “Testers aren’t finding the important
bugs.” Sometimes that’s just griping, sometimes it’s because the programmers have a
skewed sense of what’s important, but I regret to say that all too often it’s valid criticism.
Too many bug reports from testers are minor or irrelevant, and too many important bugs
are missed.
What’s an important bug? Important to whom? To a first approximation, the answer must
be “to customers”. Almost everyone will nod their head upon hearing this definition, but
do they mean it? Here’s a test of your organization’s maturity. Suppose your product is a
system that accepts email requests for service. As soon as a request is received, it sends a
reply that says “your request of 5/12/97 was accepted and its reference ID is NIC-051297-
3”. A tester who sends in many requests per day finds she has difficulty keeping track of
which request goes with which ID. She wishes that the original request were appended to
the acknowledgement. Furthermore, she realizes that some customers will also generate
many requests per day, so would also appreciate this feature. Would she:
1. file a bug report documenting a usability problem, with the expectation that it will be
assigned a reasonably high priority (because the fix is clearly useful to everyone,
important to some users, and easy to do)?
2. file a bug report with the expectation that it will be assigned “enhancement request”
priority and disappear forever into the bug database?
3. file a bug report that yields a “works as designed” resolution code, perhaps with an
email “nastygram” from a programmer or the development manager?
4. not bother with a bug report because it would end up in cases (2) or (3)?
If usability problems are not considered valid bugs, your project defines the
testing task too narrowly. Testers are restricted to checking whether the product does
what was intended, not whether what was intended is useful. Customers do not care
about the distinction, and testers shouldn’t either.
Testers are often the only people in the organization who use the system as heavily as an
expert. They notice usability problems that experts will see. (Formal usability testing
almost invariably concentrates on novice users.) Expert customers often don’t report
Classic Testing Mistakes
3
usability problems, because they’ve been trained to know it’s not worth their time.
Instead, they wait (in vain, perhaps) for a more usable product and switch to it. Testers
can prevent that lost revenue.
While defining the purpose of testing as “finding bugs important to customers” is a step
forward, it’s more restrictive than I like. It means that there is no focus on an
estimate of quality (and on the quality of that estimate). Consider these two
situations for a product with five subsystems.
1. 100 bugs are found in subsystem 1 before release. (For simplicity, assume that all bugs
are of the highest priority.) No bugs are found in the other subsystems. After release,
no bugs are reported in subsystem 1, but 12 bugs are found in each of the other
subsystems.
2. Before release, 50 bugs are found in subsystem 1. 6 bugs are found in each of the
other subsystems. After release, 50 bugs are found in subsystem 1 and 6 bugs in each
of the other subsystems.
From the “find important bugs” standpoint, the first testing effort was superior. It found
100 bugs before release, whereas the second found only 74. But I think you can make a
strong case that the second effort is more useful in practical terms. Let me restate the two
situations in terms of what a test manager might say before release:
1. “We have tested subsystem 1 very thoroughly, and we believe we’ve found almost all
of the priority 1 bugs. Unfortunately, we don’t know anything about the bugginess of
the remaining five subsystems.”
2. “We’ve tested all subsystems moderately thoroughly. Subsystem 1 is still very buggy.
The other subsystems are about 1/10th as buggy, though we’re sure bugs remain.”
This is, admittedly, an extreme example, but it demonstrates an important point. The
project manager has a tough decision: would it be better to hold on to the product for
more work, or should it be shipped now? Many factors - all rough estimates of possible
futures - have to be weighed: Will a competitor beat us to release and tie up the market?
Will dropping an unfinished feature to make it into a particular magazine’s special “Java
Development Environments” issue cause us to suffer in the review? Will critical customer
X be more annoyed by a schedule slip or by a shaky product? Will the product be buggy
enough that profits will be eaten up by support costs or, worse, a recall? 1
The testing team will serve the project manager better if it concentrates first on providing
estimates of product bugginess (reducing uncertainty), then on finding more of the bugs
that are estimated to be there. That affects test planning, the topic of the next theme.
It also affects status reporting. Test managers often err by reporting bug data
without putting it into context. Without context, project management tends to
focus on one graph:
1 Notice how none of the decisions depend solely on the product’s bugginess. That’s another reason why giving the
testing manager “stop ship” authority is a bad idea. He or she simply doesn’t have enough information to use that
authority wisely. The project manager might not have enough either, but won’t have less.
Classic Testing Mistakes
4
Bug Status
0
20
40
60
80
100
120
1
3
5
7
9
Build
Count
Bugs found
Bugs fixed
The flattening in the curve of bugs found will be interpreted in the most optimistic possible
way unless you as test manager explain the limitations of the data:
· “Only half the planned testing tasks have been finished, so little is known about half
the areas in the project. There could soon be a big spike in the number of bugs
found.”
· “That’s especially likely because the last two weekly builds have been lightly tested.
I told the testers to take their vacations now, before the project hits crunch mode.”
· “Furthermore, based on previous projects with similar amounts and kinds of testing
effort, it’s reasonable to expect at least 45 priority-1 bugs remain undiscovered.
Historically, that’s pretty high for a successful product.”
For discussions of using bug data, see [Cusumano95], [Rothman96], and [Marick97].
Earlier I asserted that testers can’t directly improve quality; they can only measure it.
That’s true only if you find yourself starting testing too late. Tests designed before
coding begins can improve quality. They inform the developer of the kinds of tests that
will be run, including the special cases that will be checked. The developer can use that
information while thinking about the design, during design inspections, and in his own
developer testing.2
Early test design can do more than prevent coding bugs. As will be discussed in the next
theme, many tests will represent user tasks. The process of designing them can find user
interface and usability problems before expensive rework is required. I’ve found problems
like no user-visible place for error messages to go, pluggable modules that didn’t fit
2 One person who worked in a pathologically broken organization told me that they were given the acceptance test in
advance. They coded the program to recognize the test cases and return the correct answer, bypassing completely
the logic that was supposed to calculate the answer. Few companies are that bad, but you could argue that
programmers will tend to produce code “trained” for the tests. If the tests are good, that’s not a problem - the code
is also trained for the real customers. The biggest danger is that the programmers will interpret the tests as narrow
special cases, rather than handling the more general situation. That can be forestalled by writing the early test
designs in terms of general situations rather than specific inputs: “more than two columns per page” rather than
“three two-inch columns on an A4 page”. Also, the tests given to the programmers will likely be supplemented by
others designed later.
Classic Testing Mistakes
5
together, two screens that had to be used together but could not be displayed
simultaneously, and “obvious” functions that couldn’t be performed. Test design fits
nicely into any usability engineering effort ([Nielsen93]) as a way of finding specification
bugs.
I should note that involving testing early feels unnatural to many programmers and
development managers. There may be feelings that you are intruding on their turf or not
giving them the chance to make the mistakes that are an essential part of design. Take
care, especially at first, not to increase their workload or slow them down. It may take
one or two entire projects to establish your credibility and usefulness.
Theme Two: Planning the Testing Effort
I’ll first discuss specific planning mistakes, then relate test planning to the role of testing.
It’s not unusual to see test plans biased toward functional testing. In functional
testing, particular features are tested in isolation. In a word processor, all the options for
printing would be applied, one after the other. Editing options would later get their own
set of tests.
But there are often interactions between features, and functional testing tends to miss
them. For example, you might never notice that the sequence of operations open a
document, edit the document, print the whole document, edit
one page, print that page doesn’t work. But customers surely will, because
they don’t use products functionally. They have a task orientation. To find the bugs that
customers see - that are important to customers - you need to write tests that cross
functional areas by mimicking typical user tasks. This type of testing is called scenario
testing, task-based testing, or use-case testing.
A bias toward functional testing also underemphasizes configuration testing.
Configuration testing checks how the product works on different hardware and when
combined with different third party software. There are typically many combinations that
need to be tried, requiring expensive labs stocked with hardware and much time spent
setting up tests, so configuration testing isn’t cheap. But, it’s worth it when you discover
that your standard in-house platform which “entirely conforms to industry standards”
actually behaves differently from most of the machines on the market.
Both configuration testing and scenario testing test global, cross-functional aspects of the
product. Another type of testing that spans the product checks how it behaves under
stress (a large number of transactions, very large transactions, a large number of
simultaneous transactions). Putting stress and load testing off to the last
minute is common, but it leaves you little time to do anything substantive when you
discover your product doesn’t scale up to more than 12 users.3
3 Failure to apply particular types of testing is another reason why developers complain that testers aren’t finding the
important bugs. Developers of an operating system could be spending all their time debugging crashes of their
private machines, crashes due to networking bugs under normal load. The testers are doing straight “functional
Classic Testing Mistakes
6
Two related mistakes are not testing the documentation and not testing
installation procedures. Testing the documentation means checking that all the
procedures and examples in the documentation work. Testing installation procedures is a
good way to avoid making a bad first impression.
How about avoiding testing altogether?
At a conference last year, I met (separately) two depressed testers who told me their
management was of the opinion that the World Wide Web could reduce testing costs.
“Look at [wildly successful internet company]. They distribute betas over the network
and get their customers to do the testing for free!” The Windows 95 beta program is also
cited in similar ways.
Beware of an overreliance on beta testing. Beta testing seems to give you test
cases representative of customer use - because the test cases are customer use. Also, bugs
reported by customers are by definition those important to customers. However, there are
several problems:
1. The customers probably aren’t that representative. In the common high-tech
marketing model4, beta users, especially those of the “put it on your web site and they
will download” sort, are the early adopters, those who like to tinker with new
technologies. They are not the pragmatists, those who want to wait until the
technology is proven and safe to adopt. The usage patterns of these two groups are
different, as are the kinds of bugs they consider important. In particular, early
adopters have a high tolerance for bugs with workarounds and for bugs that “just go
away” when they reload the program. Pragmatists, who are much less tolerant, make
up the large majority of the market.
2. Even of those beta users who actually use the product, most will not use it seriously.
They will give it the equivalent of a quick test drive, rather than taking the whole
family for a two week vacation. As any car buyer knows, the test drive often leaves
unpleasant features undiscovered.
3. Beta users - just like customers in general - don’t report usability problems unless
prompted. They simply silently decide they won’t buy the final version.
4. Beta users - just like customers in general - often won’t report a bug, especially if
they’re not sure what they did to cause it, or if they think it is obvious enough that
someone else must have already reported it.
5. When beta users report a bug, the bug report is often unusable. It costs much more
time and effort to handle a user bug report than one generated internally.
tests” on isolated machines, so they don’t find bugs. The bugs they do find are not more serious than crashes
(usually defined as highest severity for operating systems), and they’re probably less.
4 See [Moore91] or [Moore95]. I briefly describe this model in a review of Moore’s books, available through Pure
Atria’s book review pages (http://www.pureatria.com).
Classic Testing Mistakes
7
Beta programs can be useful, but they require careful planning and monitoring if they are
to do more than give a warm fuzzy feeling that at least some customers have used the
product before it’s inflicted on all of them. See [Kaner93] for a brief description.
The one situation in which beta programs are unequivocally useful is in configuration
testing. For any possible screwy configuration, you can find a beta user who has it. You
can do much more configuration testing than would be possible in an in-house lab (or even
perhaps an outsourced testing agency). Beta users won’t do as thorough a job as a trained
tester, but they’ll catch gross errors of the “BackupBuster doesn’t work on this brand of
‘compatible’ floppy tape drive” sort.
Beta programs are also useful for building word of mouth advertising, getting “first
glance” reviews in magazines, supporting third-party vendors who will build their product
on top of yours, and so on. Those are properly marketing activities, not testing.
Planning and replanning in support of the role of testing
Each of the types of testing described above, including functional testing, reduces
uncertainty about a particular aspect of the product. When done, you have confidence
that some functional areas are less buggy, others more. The product either usually works
on new configurations, or it doesn’t.5
There’s a natural tendency toward finishing one testing task before moving on
to the next, but that may lead you to discover bad news too late. It’s better to know
something about all areas than everything about a few. When you’ve discovered where the
problem areas lie, you can test them to greater depth as a way of helping the developers
raise the quality by finding the important bugs.6
Strictly, I’ve been over-simplistic in describing testing’s role as reducing uncertainty. It
would be better to say “risk-weighted uncertainty”. Some areas in the product are riskier
than others, perhaps because they’re used by more customers or because failures in that
area would be particularly severe. Riskier areas require more certainty. Failing to
correctly identify risky areas is a common mistake, and it leads to misallocated
testing effort. There are two sound approaches for identifying risky areas:
1. Ask everyone you can for their opinion. Gather data from developers, marketers,
technical writers, customer support people, and whatever customer representatives
5 I use “confidence” in its colloquial rather than its statistical sense. Conventional testing that searches specifically
for bugs does not allow you to make statements like “this product will run on 95±5% of Wintel machines”. In that
sense, it’s weaker than statistical or reliability testing, which uses statistical profiles of the customer environment
to both find bugs and make failure estimates. (See [Dyer92], [Lyu96], and [Musa87].) Statistical testing can be
difficult to apply, so I concentrate on a search for bugs as the way to get a usable estimate. A lack of statistical
validity doesn’t mean that bug numbers give you nothing but “warm and fuzzy (or cold and clammy) feelings”.
Given a modestly stable testing process, development process, and product line, bug numbers lead to distinctly
better decisions, even if they don’t come with p-values or statistical confidence intervals.
6 It’s expensive to test quality into the product, but it may be the only alternative. Code redesigns and rewrites may
not be an option.
Classic Testing Mistakes
8
you can find. See [Kaner96a] for a good description of this kind of collaborative test
planning.
2. Use historical data. Analyzing bug reports from past products (especially those from
customers, but also internal bug reports) helps tell you what areas to explore in this
project.
“So, winter’s early this year. We’re still going to invade Russia.”
Good testers are systematic and organized, yet they are exposed to all the chaos and twists
and turns and changes of plan typical of a software development project. In fact, the
chaos is magnified by the time it gets to testers, because of their position at the end of the
food chain and typically low status.7 One unfortunate reaction is sticking stubbornly
to the test plan. Emotionally, this can be very satisfying: “They can flail around
however they like, but I’m going to hunker down and do my job.” The problem is that
your job is not to write tests. It’s to find the bugs that matter in the areas of greatest
uncertainty and risk, and ignoring changes in the reality of the product and project can
mean that your testing becomes irrelevant.8
That’s not to say that testers should jump to readjust all their plans whenever there’s a
shift in the wind, but my experience is that more testers let their plans fossilize than
overreact to project change.
Theme Three: Personnel Issues
Fresh out of college, I got my first job as a tester. I had been hired as a developer, and
knew nothing about testing, but, as they said, “we don’t know enough about you yet, so
we’ll put you somewhere where you can’t do too much damage”. In due course, I
“graduated” to development.
Using testing as a transitional job for new programmers is one of the two
classic mistaken ways to staff a testing organization. It has some virtues. One is that you
really can keep bad hires away from the code. A bozo in testing is often less dangerous
than a bozo in development. Another is that the developer may learn something about
testing that will be useful later. (In my case, it founded a career.) And it’s a way for the
new hire to learn the product while still doing some useful work.
The advantages are outweighed by the disadvantage: the new hire can’t wait to get out of
testing. That’s hardly conducive to good work. You could argue that the testers have to
do good work to get “paroled”. Unfortunately, because people tend to be as impressed by
effort as by results, vigorous activity - especially activity that establishes credentials as a
7 How many proposed changes to a product are rejected because of their effect on the testing schedule? How often
does the effect on the testing team even cross a developer’s or marketer’s mind?
8 This is yet another reason why developers complain that testers aren’t finding the important bugs. Because of
market pressure, the project has shifted to an Internet focus, but the testers are still using and testing the old
“legacy” interface instead of the now critically important web browser interface.
Classic Testing Mistakes
9
programmer - becomes the way out. As a result, the fledgling tester does things like
become the expert in the local programmable editor or complicated freeware tool. That,
at least, is a potentially useful role, though it has nothing to do with testing. More
dangerous is vigorous but misdirected testing activity; namely, test automation. (See the
last theme.)
Even if novice testers were well guided, having so much of the testing staff be transients
could only work if testing is a shallow algorithmic discipline. In fact, good testers require
deep knowledge and experience.
The second classic mistake is recruiting testers from the ranks of failed
programmers. There are plenty of good testers who are not good programmers, but a
bad programmer likely has some work habits that will make him a bad tester, too. For
example, someone who makes lots of bugs because he’s inattentive to detail will miss lots
of bugs for the same reason.
So how should the testing team be staffed? If you’re willing to be part of the training
department, go ahead and accept new programmer hires.9 Accept as applicants
programmers who you suspect are rejects (some fraction of them really have gotten tired
of programming and want a change) but interview them as you would an outside hire.
When interviewing, concentrate less on formal qualifications than on intelligence and the
character of the candidate’s thought. A good tester has these qualities:10
· methodical and systematic.
· tactful and diplomatic (but firm when necessary).
· skeptical, especially about assumptions, and wants to see concrete evidence.
· able to notice and pursue odd details.
· good written and verbal skills (for explaining bugs clearly and concisely).
· a knack for anticipating what others are likely to misunderstand. (This is useful both in
finding bugs and writing bug reports.)
· a willingness to get one’s hands dirty, to experiment, to try something to see what
happens.
Be especially careful to avoid the trap of testers who are not domain experts.
Too often, the tester of an accounting package knows little about accounting.
Consequently, she finds bugs that are unimportant to accountants and misses ones that
are. Further, she writes bug reports that make serious bugs seem irrelevant. A
programmer may not see past the unrepresentative test to the underlying important
problem. (See the discussion of reporting bugs in the next theme.)
Domain experts may be hard to find. Try to find a few. And hire testers who are quick
studies and are good at understanding other people’s work patterns.
9 Some organizations rotate all developers through testing. Well, all developers except those with enough clout to
refuse. And sometimes people not in great demand don’t seem ever to rotate out. I’ve seen this approach work,
but it’s fragile.
10 See also the list in [Kaner93], chapter 15.
Classic Testing Mistakes
10
Two groups of people are readily at hand and often have those skills. But testing teams
often do not seek out applicants from the customer service staff or the
technical writing staff. The people who field email or phone problem reports
develop, if they’re good, a sense of what matters to the customer (at least to the vocal
customer) and the best are very quick on their mental feet.
Like testers, technical writers often also lack detailed domain knowledge. However,
they’re in the business of translating a product’s behavior into terms that make sense to a
user. Good technical writers develop a sense of what’s important, what’s confusing, and
so on. Those areas that are hard to explain are often fruitful sources of bugs. (What
confuses the user often also confuses the programmer.)
One reason these two groups are not tapped is an insistence that testers be able to
program. Programming skill brings with it certain advantages in bug hunting. A
programmer is more likely to find the number 2,147,483,648 interesting than an
accountant will. (It overflows a signed integer on most machines.) But such tricks of the
trade are easily learned by competent non-programmers, so not having them is a weak
reason for turning someone down.
If you hire according to these guidelines, you will avoid a testing team that lacks
diversity. All of the members will lack some skills, but the team as a whole will have
them all. Over time, in a team with mutual respect, the non-programmers will pick up
essential tidbits of programming knowledge, the programmers will pick up domain
knowledge, and the people with a writing background will teach the others how to
deconstruct documents.
All testers - but non-programmers especially - will be hampered by a physical
separation between developers and testers. A smooth working relationship
between developers and testers is essential to efficient testing. Too much valuable
information is unwritten; the tester finds it by talking to developers. Developers and
testers must often work together in debugging; that’s much harder to do remotely.
Developers often dismiss bug reports too readily, but it’s harder to do that to a tester you
eat lunch with.
Remote testing can be made to work - I’ve done it - but you have to be careful. Budget
money for frequent working visits, and pay attention to interpersonal issues.
Some believe that programmers can’t test their own code. On the face of it, this
is false: programmers test their code all the time, and they do find bugs. Just not enough
of them, which is why we need independent testers.
But if independent testers are testing, and programmers are testing (and inspecting), isn’t
there a potential duplication of effort? And isn’t that wasteful? I think the answer is yes.
Ideally, programmers would concentrate on the types of bugs they can find adequately
well, and independent testers would concentrate on the rest.
Classic Testing Mistakes
11
The bugs programmers can find well are those where their code does not do what they
intended. For example, a reasonably trained, reasonably motivated programmer can do a
perfectly fine job finding boundary conditions and checking whether each known
equivalence class is handled. What programmers do poorly is discovering overlooked
special cases (especially error cases), bugs due to the interaction of their code with other
people’s code (including system-wide properties like deadlocks and performance
problems), and usability problems.
Crudely put, good programmers do functional testing, and testers should do everything
else.11 Recall that I earlier claimed an over-concentration on functional testing is a classic
mistake. Decent programmer testing magnifies the damage it does.
Of course, decent programmer testing is relatively rare, because programmers are
neither trained nor motivated to test. This is changing, gradually, as companies
realize it’s cheaper to have bugs found and fixed quickly by one person, instead of more
slowly by two. Until then, testers must do both the testing that programmers can do and
the testing only testers can do, but must take care not to let functional testing squeeze out
the rest.
Theme Four: The Tester At Work
When testing, you must decide how to exercise the program, then do it. The doing is ever
so much more interesting than the deciding. A tester’s itch to start breaking the program is
as strong as a programmer’s itch to start writing code - and it has the same effect: design
work is skimped, and quality suffers. Paying more attention to running tests
than to designing them is a classic mistake. A tester who is not systematic, who does
not spend time laying out the possibilities in advance, will overlook special cases. They
may be the same subtle ones that the programmers overlooked.
Concentration on execution also results in unreviewed test designs. Just like
programmers, testers can benefit from a second pair of eyes. Reviews of test designs
needn’t be as elaborate as product design reviews, but a short check of the testing
approach and the resulting tests can find significant omissions at low cost.
What is a test design?
A test design should contain a description of the setup (including machine configuration
for a configuration test), inputs given to the product, and a description of expected results.
One common mistake is being too specific about test inputs and procedures.
Let’s assume manual test implementation for the moment. A related argument for
automated tests will be discussed in the next section. Suppose you’re testing a banking
application. Here are two possible test designs:
11 Independent testers will also provide a “safety net” for programmer testing. A certain amount of functional testing
might be planned, or it might be a side effect of the other types of testing being done.
Classic Testing Mistakes
12
Design 1
Setup: initialize the balance in account 12 with $100.
Procedure:
Start the program.
Type 12 in the Account window.
Press OK.
Click on the ‘Withdraw’ toolbar button.
In the withdraw popup dialog, click on the ‘all’ button.
Press OK.
Expect to see a confirmation popup that says “You are about to withdraw all the
money from this account. Continue?”
Press OK.
Expect to see a 0 balance in the account window.
Separately query the database to check that the zero balance has been posted.
Exit the program with File->Exit.
Design 2
Setup: initialize the balance with a positive value.
Procedure:
Start the program on that account.
Withdraw all the money from the account using the ‘all’ button.
It’s an error if the transaction happens without a confirmation popup.
Immediately thereafter:
- Expect a $0 balance to be displayed.
- Independently query the database to check that the zero balance has been posted.
The first design style has these advantages:
· The test will always be run the same way. You are more likely to be able to reproduce
the bug. So will the programmer.
· It details all the important expected results to check. Imprecise expected results make
failures harder to notice. For example, a tester using the second style would find it
easier to overlook a spelling error in the confirmation popup, or even that it was the
wrong popup.
· Unlike the second style, you always know exactly what you’ve tested. In the second
style, you couldn’t be sure that you’d ever gotten to the Withdraw dialog via the
toolbar. Maybe the menu was always used. Maybe the toolbar button doesn’t work at
all!
· By spelling out all inputs, the first style prevents testers from carelessly overusing
simple values. For example, a tester might always test accounts with $100, rather than
using a variety of small and large balances. (Either style should include explicit tests
for boundary and special values.)
However, there are also some disadvantages:
· The first style is more expensive to create.
Classic Testing Mistakes
13
· The inevitable minor changes to the user interface will break it, so it’s more expensive
to maintain.
· Because each run of the test is exactly the same, there’s no chance that a variation in
procedure will stumble across a bug.
· It’s hard for testers to follow a procedure exactly. When one makes a mistake -
pushes the wrong button, for example - will she really start over?
On balance, I believe the negatives often outweigh the positives, provided there is a
separate testing task to check that all the menu items and toolbar buttons are hooked up.
(Not only is a separate task more efficient, it’s less error-prone. You’re less likely to
accidentally omit some buttons.)
I do not mean to suggest that test cases should not be rigorous, only that they should be
no more rigorous than is justified, and that we testers sometimes error on the side of
uneconomical detail.
Detail in the expected results is less problematic than in the test procedure, but too much
detail can focus the tester’s attention too much on checking against the script he’s
following. That might encourage another classic mistake: not noticing and
exploring “irrelevant” oddities. Good testers are masters at noticing “something
funny” and acting on it. Perhaps there’s a brief flicker in some toolbar button which, when
investigated, reveals a crash. Perhaps an operation takes an oddly long time, which
suggests to the attentive tester that increasing the size of an “irrelevant” dataset might
cause the program to slow to a crawl. Good testing is a combination of following a script
and using it as a jumping-off point for an exploration of the product.
An important special case of overlooking bugs is checking that the product does
what it’s supposed to do, but not that it doesn’t do what it isn’t supposed
to do. As an example, suppose you have a program that updates a health care service’s
database of family records. A test adds a second child to Dawn Marick’s record. Almost
all testers would check that, after the update, Dawn now has two children. Some testers -
those who are clever, experienced, or subject matter experts - would check that Dawn
Marick’s spouse, Brian Marick, also now has two children. Relatively few testers would
check that no one else in the database has had a child added. They would miss a bug
where the programmer over-generalized and assumed that all “family information” updates
should be applied both to a patient and to all members of her family, giving Paul Marick
(aged 2) a child.
Ideally, every test should check that all data that should be modified has been modified
and that all other data has been unchanged. With forethought, that can be built into
automated tests. Complete checking may be impractical for manual tests, but occasional
quick scans for data that might be corrupted can be valuable.
Testing should not be isolated work
Here’s another version of the test we’ve been discussing:
Classic Testing Mistakes
14
Design 3
Withdraw all with confirmation and normal check for 0.
That means the same thing as Design 2 - but only to the original author. Test suites
that are understandable only by their owners are ubiquitous. They cause many
problems when their owners leave the company; sometimes many month’s worth of work
has to be thrown out.
I should note that designs as detailed as Designs 1 or 2 often suffer a similar problem.
Although they can be run by anyone, not everyone can update them when the product’s
interface changes. Because the tests do not list their purposes explicitly, updates can
easily make them test a little less than they used to. (Consider, for example, a suite of
tests in the Design 1 style: how hard will it be to make sure that all the user interface
controls are touched in the revised tests? Will the tester even know that’s a goal of the
suite?) Over time, this leads to what I call “test suite decay,” in which a suite full of tests
runs but no longer tests much of anything at all.12
Another classic mistake involves the boundary between the tester and programmer. Some
products are mostly user interface; everything they do is visible on the screen. Other
products are mostly internals; the user interface is a “thin pipe” that shows little of what
happens inside. The problem is that testing has to use that thin pipe to discover failures.
What if complicated internal processing produces only a “yes or no” answer? Any given
test case could trigger many internal faults that, through sheer bad luck, don’t produce the
wrong answer.13
In such situations, testers sometimes rely solely on programmer (“unit”) testing. In cases
where that’s not enough, testing only through the user-visible interface is a
mistake. It is far better to get the programmers to add “testability hooks” or “testpoints”
that reveal selected internal state. In essence, they convert a product like this:
Guts of the Product
User Interface
to one like this:
12 The purpose doesn’t need to be listed with the test. It may be better to have a central document describing the
purposes of a group of tests, perhaps in tabular form. Of course, then you have to keep that document up to date.
13 This is an example of the formal notion of “testability”. See, [Friedman95] or [Voas91] for an academic treatment.
Classic Testing Mistakes
15
Guts of the Product
User Interface
Testing
Interface
It is often difficult to convince programmers to add test support code to the product.
(Actual quote: “I don’t want to clutter up my code with testing crud.”) Persevere, start
modestly, and take advantage of these facts:
1. The test support code is often a simple extension of the debugging support code
programmers write anyway.14
2. A small amount of test support code often goes a long way.
A common objection to this approach is that the test support code must be compiled out
of the final product (to avoid slowing it down). If so, tests that use the testing interface
“aren’t testing what we ship”. It is true that some of the tests won’t run on the final
version, so you may miss bugs. But, without testability code, you’ll miss bugs that don’t
reveal themselves through the user interface. It’s a risk tradeoff, and I believe that adding
test support code usually wins. See [Marick95], chapter 13, for more details.
In one case, there’s an alternative to having the programmer add code to the product:
have a tool do it. Commercial tools like Purify, Boundschecker, and Sentinel
automatically add code that checks for certain classes of failures (such as memory leaks).15
They provide a narrow, specialized testing interface. For marketing reasons, these tools
are sold as programmer debugging tools, but they’re equally test support tools, and I’m
amazed that testing groups don’t use them as a matter of course.
Testability problems are exacerbated in distributed systems like conventional client/server
systems, multi-tiered client/server systems, Java applets that provide smart front-ends to
web sites, and so forth. Too often, tests of such systems amount to shallow tests of the
user interface component because that’s the only component that the tester can easily
control.
14 For example, the Java language encourages programmers to use the toString method to make internal objects
printable. A programmer doesn’t have to use it, since the debugger lets her see all the values in any object, but it
simplifies debugging for objects she’ll look at often. All testers need (roughly) is a way to call toString from
some external interface.
15 For a list of such commercial tools, see http://www.stlabs.com/marick/faqs/tools.htm. Follow the link to “Other
Test Implementation Tools”.
Classic Testing Mistakes
16
Finding failures is only the start
It’s not enough to find a failure; you must also report it. Unfortunately, poor bug
reporting is a classic mistake. Tester bug reports suffer from five major problems:
1. They do not describe how to reproduce the bug. Either no procedure is given, or the
given procedure doesn’t work. Either case will likely get the bug report shelved.
2. They don’t explain what went wrong. At what point in the procedure does the bug
occur? What should happen there? What actually happened?
3. They are not persuasive about the priority of the bug. Your job is to have the
seriousness of the bug accurately assessed. There’s a natural tendency for
programmers and managers to rate bugs as less serious than they are. If you believe a
bug is serious, explain why a customer would view it the way you do.16 If you found
the bug with an odd case, take the time to reproduce it with a more obviously common
or compelling case.
4. They do not help the programmer in debugging. This is a simple cost/benefit tradeoff.
A small amount of time spent simplifying the procedure for reproducing the bug or
exploring the various ways it could occur may save a great deal of programmer time.
5. They are insulting, so they poison the relationship between developers and testers.
[Kaner93] has an excellent chapter (5) on how to write bug reports. Read it.
Not all bug reports come from testers. Some come from customers. When that happens,
it’s common for a tester to write a regression test that reproduces the bug in the broken
version of the product. When the bug is fixed, that test is used to check that it was fixed
correctly.
However, adding only regression tests is not enough. A customer bug report
suggests two things:
1. That area of the product is buggy. It’s well known that bugs tend to cluster.17
2. That area of the product was inadequately tested. Otherwise, why did the bug
originally escape testing?
An appropriate response to several customer bug reports in an area is to schedule more
thorough testing for that area. Begin by examining the current tests (if they’re
understandable) to determine their systematic weaknesses.
Finally, every bug report is a gift from a customer that tells you how to test better in the
future. A common mistake is failing to take notes for the next testing effort.
16 Cem Kaner suggests something even better: have the person whose budget will be directly affected explain why
the bug is important. The customer service manager will speak more authoritatively about those installation bugs
than you could.
17 That’s true even if the bug report is due to a customer misunderstanding. Perhaps this area of the product is just
too hard to understand.
Classic Testing Mistakes
17
The next product will be somewhat like this one, the bugs will be somewhat like these, and
the tests useful in finding those bugs will also be somewhat like the ones you just ran.
Mental notes are easy to forget, and they’re hard to hand to a new tester. Writing is a
wonderful human invention: use it. Both [Kaner93] and [Marick95] describe formats for
archiving test information, and both contain general-purpose examples.
Theme Five: Technology Run Rampant
Test automation is based on a simple economic proposition:
· If a manual test costs $X to run the first time, it will cost just about $X to run each
time thereafter, whereas:
· If an automated test costs $Y to create, it will cost almost nothing to run from then
on.
$Y is bigger than $X. I’ve heard estimates ranging from 3 to 30 times as big, with the
most commonly cited number seeming to be 10. Suppose 10 is correct for your application
and your automation tools. Then you should automate any test that will be run more than
10 times.
A classic mistake is to ignore these economics, attempting to automate all tests,
even those that won’t be run often enough to justify it. What tests clearly justify
automation?
· Stress or load tests may be impossible to implement manually. Would you have a
tester execute and check a function 1000 times? Are you going to sit 100 people down
at 100 terminals?
· Nightly builds are becoming increasingly common. (See [McConnell96] or
[Cusumano95] for descriptions of the procedure.) If you build the product nightly,
you must have an automated “smoke test suite”. Smoke tests are those that are run
after every build to check for grievous errors.
· Configuration tests may be run on dozens of configurations.
The other kinds of tests are less clear-cut. Think hard about whether you’d rather have
automated tests that are run often or ten times as many manual tests, each run once.
Beware of irrational, emotional reasons for automating, such as testers who find
programming automated tests more fun, a perception that automated tests will lead to
higher status (everything else is “monkey testing”), or a fear of not rerunning a test that
would have found a bug (thus leading you to automate it, leaving you without enough
time to write a test that would have found a different bug).
You will likely end up in a compromise position, where you have:
1. a set of automated tests that are run often.
2. a well-documented set of manual tests. Subsets of these can be rerun as necessary.
For example, when a critical area of the system has been extensively changed, you
Classic Testing Mistakes
18
might rerun its manual tests. You might run different samples of this suite after each
major build. 18
3. a set of undocumented tests that were run once (including exploratory “bug bash”
tests).
Beware of expecting to rerun all manual tests. You will become bogged down
rerunning tests with low bug-finding value, leaving yourself no time to create new tests.
You will waste time documenting tests that don’t need to be documented.
You could automate more tests if you could lower the cost of creating them. That’s the
promise of using GUI capture/replay tools to reduce test creation cost. The
notion is that you simply execute a manual test, and the tool records what you do. When
you manually check the correctness of a value, the tool remembers that correct value.
You can then later play back the recording, and the tool will check whether all checked
values are the same as the remembered values.
There are two variants of such tools. What I call the first generation tools capture raw
mouse movements or keystrokes and take snapshots of the pixels on the screen. The
second generation tools (often called “object oriented”) reach into the program and
manipulate underlying data structures (widgets or controls).19
First generation tools produce unmaintainable tests. Whenever the screen layout changes
in the slightest way, the tests break. Mouse clicks are delivered to the wrong place, and
snapshots fail in irrelevant ways that nevertheless have to be checked. Because screen
layout changes are common, the constant manual updating of tests becomes insupportable.
Second generation tools are applicable only to tests where the underlying data structures
are useful. For example, they rarely apply to a photograph editing tool, where you need to
look at an actual image - at the actual bitmap. They also tend not to work with custom
controls. Heavy users of capture/replay tools seem to spend an inordinate amount of time
trying to get the tool to deal with the special features of their program - which raises the
cost of test automation.
Second generation tools do not guarantee maintainability either. Suppose a radio button is
changed to a pulldown list. All of the tests that use the old controls will now be broken.
GUI interface changes are of course common, especially between releases. Consider
carefully whether an automated test that must be recaptured after GUI changes is worth
having. Keep in mind that it can be hard to figure out what a captured test is attempting
to accomplish unless it is separately documented.
18 An additional benefit of automated tests is that they can be run faster than manual tests. That allows you to reduce
the time between completion of a build and completion of its testing. That can be especially important in the final
builds, if only to avoid pressure from executives itching to ship the product. You’re trading fewer tests for faster
time to market. That can be a reasonable tradeoff, but it doesn’t affect the core of my argument, which is that not
all tests should be automated.
19 These are, in effect, another example of tools that add test support code to the program.
Classic Testing Mistakes
19
As a rule of thumb, it’s dangerous to assume that an automated test will pay for itself this
release, so your test must be able to survive a reasonable level of GUI change. I believe
that capture/replay tests, of either generation, are rarely robust enough.
An alternative approach to capture/replay is scripting tests. (Most GUI capture/replay
tools also allow scripting.) Some member of the testing team writes a “test API”
(application programmer interface) that lets other members of the team express their tests
in less GUI-dependent terms. Whereas a captured test might look like this:
text $main.accountField “12”
click $main.OK
menu $operations
menu $withdraw
click $withdrawDialog.all
...
a script might look like this:
select-account 12
withdraw all
...
The script commands are subroutines that perform the appropriate mouse clicks and key
presses. If the API is well-designed, most GUI changes will require changes only to the
implementation of functions like withdraw, not to all the tests that use them.20 Please
note that well-designed test APIs are as hard to write as any other good API. That is,
they’re hard, and you shouldn’t expect to get it right the first time.
In a variant of this approach, the tests are data-driven. The tester provides a table
describing key values. Some tool reads the table and converts it to the appropriate mouse
clicks. The table is even less vulnerable to GUI changes because the sequence of
operations has been abstracted away. It’s also likely to be more understandable, especially
to domain experts who are not programmers. See [Pettichord96] for an example of datadriven
automated testing.
Note that these more abstract tests (whether scripted or data-driven) do not necessarily
test the user interface thoroughly. If the Withdraw dialog can be reached via several
routes (toolbar, menu item, hotkey), you don’t know whether each route has been tried.
You need a separate (most likely manual) effort to ensure that all the GUI components are
connected correctly.
Whatever approach you take, don’t fall into the trap of expecting regression tests to
find a high proportion of new bugs. Regression tests discover that new or
changed code breaks what used to work. While that happens more often than any of us
20 The “Joe Gittano” stories and essays on my web page, http://www.stlabs.com/marick/root.htm, go into this
approach in more detail.
Classic Testing Mistakes
20
would like, most bugs are in the product’s new or intentionally changed behavior. Those
bugs have to be caught by new tests.
I © code coverage
GUI capture/replay testing is appealing because it’s a quick fix for a difficult problem.
Another class of tool has the same kind of attraction.
The difficult problem is that it’s so hard to know if you’re doing a good job testing. You
only really find out once the product has shipped. Understandably, this makes managers
uncomfortable. Sometimes you find them embracing code coverage with the
devotion that only simple numbers can inspire. Testers sometimes also
become enamored of coverage, though their romance tends to be less fervent and ends
sooner.
What is code coverage? It is any of a number of measures of how thoroughly code is
exercised. One common measure counts how many statements have been executed by any
test. The appeal of such coverage is twofold:
1. If you’ve never exercised a line of code, you surely can’t have found any of its bugs.
So you should design tests to exercise every line of code.
2. Test suites are often too big, so you should throw out any test that doesn’t add value.
A test that adds no new coverage adds no value.
Only the first sentences in (1) and (2) are true. I’ll illustrate with this picture, where the
irregular splotches indicate bugs:
Tests needed
to find bugs
Tests
Needed
For
Coverage
If you write only the tests needed to satisfy coverage, you’ll find bugs. You’re guaranteed
to find the code that always fails, no matter how it’s executed. But most bugs depend on
how a line of code is executed. For example, code with an off-by-one error fails only
when you exercise a boundary. Code with a divide-by-zero error fails only if you divide
by zero. Coverage-adequate tests will find some of these bugs, by sheer dumb luck, but
not enough of them. To find enough bugs, you have to write additional tests that
“redundantly” execute the code.
Classic Testing Mistakes
21
For the same reason, removing tests from a regression test suite just because
they don’t add coverage is dangerous. The point is not to cover the code; it’s to have
tests that can discover enough of the bugs that are likely to be caused when the code is
changed. Unless the tests are ineptly designed, removing tests will just remove power. If
they are ineptly designed, using coverage converts a big and lousy test suite to a small and
lousy test suite. That’s progress, I suppose, but it’s addressing the wrong problem.21
A grave danger of code coverage is that it is concrete, objective, and easy to measure.
Many managers today are using coverage as a performance goal for testers.
Unfortunately, a cardinal rule of management applies here: “Tell me how a person is
evaluated, and I’ll tell you how he behaves.” If a person is evaluated by how much
coverage is achieved in a given time (or in how little time it takes to reach a particular
coverage goal), that person will tend to write tests to achieve high coverage in the fastest
way possible. Unfortunately, that means shortchanging careful test design that targets
bugs, and it certainly means avoiding in-depth, repetitive testing of “already covered”
code.22
Using coverage as a test design technique works only when the testers are both designing
poor tests and testing redundantly. They’d be better off at least targeting their poor tests
at new areas of code. In more normal situations, coverage as a guide to design only
decreases the value of the tests or puts testers under unproductive pressure to meet
unhelpful goals.
Coverage does play a role in testing, not as a guide to test design, but as a rough
evaluation of it. After you’ve run your tests, ask what their coverage is. If certain areas of
the code have no or low coverage, you’re sure to have tested them shallowly. If that
wasn’t intentional, you should improve the tests by rethinking their design. Coverage has
told you where your tests are weak, but it’s up to you to understand how.
You might not entirely ignore coverage. You might glance at the uncovered lines of code
(possibly assisted by the programmer) to discover the kinds of tests you omitted. For
example, you might scan the code to determine that you undertested a dialog box’s error
handling. Having done that, you step back and think of all the user errors the dialog box
should handle, not how to provoke the error checks on line 343, 354, and 399. By
rethinking design, you’ll not only execute those lines, you might also discover that several
other error checks are entirely missing. (Coverage can’t tell you how well you would
have exercised needed code that was left out of the program.)
21 Not all regression test suites have the same goals. Smoke tests are intended to run fast and find grievous, obvious
errors. A coverage-minimized test suite is entirely appropriate.
22 In pathological cases, you’d never bother with user scenario testing, load testing, or configuration testing, none of
which add much, if any, coverage to functional testing.
Classic Testing Mistakes
22
There are types of coverage that point more directly to design mistakes than statement
coverage does (branch coverage, for example).23 However, none - and not all of them put
together - are so accurate that they can be used as test design techniques.
One final note: Romances with coverage don’t seem to end with the former devotee
wanting to be “just good friends”. When, at the end of a year’s use of coverage, it has not
solved the testing problem, I find testing groups abandoning coverage entirely.
That’s a shame. When I test, I spend somewhat less than 5% of my time looking at
coverage results, rethinking my test design, and writing some new tests to correct my
mistakes. It’s time well spent.
Acknowledgements
My discussions about testing with Cem Kaner have always been illuminating. The
LAWST (Los Altos Workshop on Software Testing) participants said many interesting
things about automated GUI testing. The LAWST participants were Chris Agruss, Tom
Arnold, James Bach, Jim Brooks, Doug Hoffman, Cem Kaner, Brian Lawrence, Tom
Lindemuth, Noel Nyman, Brett Pettichord, Drew Pritsker, and Melora Svoboda. Paul
Czyzewski, Peggy Fouts, Cem Kaner, Eric Petersen, Joe Strazzere, Melora Svoboda, and
Stephanie Young read an earlier draft.
References
[Cusumano95]
M. Cusumano and R. Selby, Microsoft Secrets, Free Press, 1995.
[Dyer92]
Michael Dyer, The Cleanroom Approach to Quality Software Development,
Wiley, 1992.
[Friedman95]
M. Friedman and J. Voas, Software Assessment: Reliability, Safety, Testability,
Wiley, 1995.
[Kaner93]
C. Kaner, J. Falk, and H.Q. Nguyen, Testing Computer Software (2/e), Van
Nostrand Reinhold, 1993.
[Kaner96a]
Cem Kaner, “Negotiating Testing Resources: A Collaborative Approach,” a
position paper for the panel session on “How to Save Time and Money in
Testing”, in Proceedings of the Ninth International Quality Week (Software
Research, San Francisco, CA), 1996. (http://www.kaner.com/negotiate.htm)
[Kaner96b]
Cem Kaner, “Software Negligence & Testing Coverage,” in Proceedings of STAR
96, (Software Quality Engineering, Jacksonville, FL), 1996.
(http://www.kaner.com/coverage.htm)
23 See [Marick95], chapter 7, for a description of additional code coverage measures. See also [Kaner96b] for a list of
more than one hundred types of coverage.
Classic Testing Mistakes
23
[Lyu96]
Michael R. Lyu (ed.), Handbook of Software Reliability Engineering, McGraw-
Hill, 1996.
[Marick95]
Brian Marick, The Craft of Software Testing, Prentice Hall, 1995.
[Marick97]
Brian Marick, “The Test Manager at the Project Status Meeting,” in Proceedings
of the Tenth International Quality Week (Software Research, San Francisco, CA),
1997. (http://www.stlabs.com/~marick/root.htm)
[McConnell96]
Steve McConnell, Rapid Development, Microsoft Press, 1996.
[Moore91]
Geoffrey A. Moore, Crossing the Chasm, Harper Collins, 1991.
[Moore95]
Geoffrey A. Moore, Inside the Tornado, Harper Collins, 1995.
[Musa87]
J. Musa, A. Iannino, and K. Okumoto, Software Reliability : Measurement,
Prediction, Application, McGraw-Hill, 1987.
[Nielsen93]
Jakob Nielsen, Usability Engineering, Academic Press, 1993.
[Pettichord96]
Bret Pettichord, “Success with Test Automation,” in Proceedings of the Ninth
International Quality Week (Software Research, San Francisco, CA), 1996.
(http://www.io.com/~wazmo/succpap.htm)
[Rothman96]
Johanna Rothman, “Measurements to Reduce Risk in Product Ship Decisions,” in
Proceedings of the Ninth International Quality Week (Software Research, San
Francisco, CA), 1996. (http://world.std.com/~jr/Papers/QW96.html)
[Voas91]
J. Voas, L. Morell, and K. Miller, “Predicting Where Faults Can Hide from
Testing,” IEEE Software, March, 1991.
Classic Testing Mistakes
24
Some Classic Testing Mistakes
The role of testing
· Thinking the testing team is responsible for assuring quality.
· Thinking that the purpose of testing is to find bugs.
· Not finding the important bugs.
· Not reporting usability problems.
· No focus on an estimate of quality (and on the quality of that estimate).
· Reporting bug data without putting it into context.
· Starting testing too late (bug detection, not bug reduction)
Planning the complete testing effort
· A testing effort biased toward functional testing.
· Underemphasizing configuration testing.
· Putting stress and load testing off to the last minute.
· Not testing the documentation
· Not testing installation procedures.
· An overreliance on beta testing.
· Finishing one testing task before moving on to the next.
· Failing to correctly identify risky areas.
· Sticking stubbornly to the test plan.
Personnel issues
· Using testing as a transitional job for new programmers.
· Recruiting testers from the ranks of failed programmers.
· Testers are not domain experts.
· Not seeking candidates from the customer service staff or technical writing staff.
· Insisting that testers be able to program.
· A testing team that lacks diversity.
· A physical separation between developers and testers.
· Believing that programmers can’t test their own code.
· Programmers are neither trained nor motivated to test.
The tester at work
· Paying more attention to running tests than to designing them.
· Unreviewed test designs.
· Being too specific about test inputs and procedures.
· Not noticing and exploring “irrelevant” oddities.
· Checking that the product does what it’s supposed to do, but not that it doesn’t do
what it isn’t supposed to do.
· Test suites that are understandable only by their owners.
Classic Testing Mistakes
25
· Testing only through the user-visible interface.
· Poor bug reporting.
· Adding only regression tests when bugs are found.
· Failing to take notes for the next testing effort.
Test automation
· Attempting to automate all tests.
· Expecting to rerun manual tests.
· Using GUI capture/replay tools to reduce test creation cost.
· Expecting regression tests to find a high proportion of new bugs.
Code coverage
· Embracing code coverage with the devotion that only simple numbers can inspire.
· Removing tests from a regression test suite just because they don’t add coverage.
· Using coverage as a performance goal for testers.
· Abandoning coverage entirely.
No comments:
Post a Comment